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SUMMARY 

This fifth and final volume of the report,  "Hydrodynamic Effects of 

Nuclear. Explosions, " presents new theoretical developments for two 

problems.    The first is the determination of the waves resulting from 

the passage of a high-pressure disturbance over the free surface of a 

body of water.    This would occur in the case of a burst on or over land 

near a shore and is, therefore,  of interest to the Five City Study in 

which three nuclear surface bursts are near rivers or bays. 

The second topic is motion of the ground water table induced by a surface 

burst.    This problem is of interest for the determination of the migration 

of radioactive contaminants and is also applicable to three cities of the 

Five City Study. 

Only theoretical development is given here.    Typical methods of 

application may be found in Volume IV of this report subtitled "Five 

City Study." 
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NOMENCLATURE 

Part I 

a = decay constant in error function 

f = Laplace transform function 

f = friction factors n 
g = acceleration of gravity 

h = water depth 

k = variable in Hankel transform 

m,  n = summation indices 

s = variable in Laplace transform 

t = time 

u = horizontal particle velocity 

x = horizontal distance from shore 

erf = error function 

erfc = complimentary error function 

A = arbitrary constant 

F = Laplace-Hankel transform of dimensionless surface 
elevation 

F(a, b,c,z) = hypergeometric function 

G - function 

H = Heaviside step function 

I = integral 

J - Bessel function of nth order n 
L = length scale 

P = pressure acting upon surface 

P = Magnitude of pressure step 

P = Legendre function n 0 

P* = pressure front 

IP = Laplace transform of dimensionless pressure 

Q = Laplace-Hankel transform dimensionless pressure 

Q = magnitude of particle velocity vector 

vii 
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NOMENCLATURE 
(Continued) 

S a variable 

T = time scale 

U = horizontal velocity of pressure front 

U. = wind velocity 

a » beach slope 

ß   «   exponential decay factor 

y « ditnensionless pressure 

Ö = Oirac delta function 

C = dirnensionless surface elevation 

CJ = dynamic response 

TJ =   surface elevation 

0 =      r 
0 =   fluid density 

p. =   air density 

T =   dirnensionless time 

r =   shear stress at surface s 
T. =   shear stress at bottom o 
X =   transcendental function 

F =   contour of integration 

F =   gamma function 

A =   variable in transform 

() ,   ()    etc. refer to partial derivatives 

{)_. refers to peak depression 

()_, refers to peak elevation 

Part II 

d   =   distance between well and reference point 

f,  g   =   various functions as required in analyses 

h   =   water depth 

Vlll 



NOMENCLATURE 
(Concluded) 

i 

c 
e 
x 
u 

p 

p 

V 

v2 

0* 
(L 
0 w 

Of », 
<1„ 

etc. 

dimensionless water level ratio 

angle 

distance between crater and river 

variable 

fluid density 

H/R 

potential .function 

gradient operator 

Laplacian operator 

refers to dimensionless variables 

refers to initial value 

refers to transient water level 

refers to stream water level 

refers to successive terms in series solution 

refers to partial derivatives 



NOMENCLATURE 
(Continued) 

k = constant in Darcy law 

m = porosity of soil 

n = summation index 

p = pressure 

q = unit discharge 

r,  8,  z = cylindrical coordinates 
■ 

s = drawdown of well 

t = time 

u = particle velocity component in   r-direction 

w = particle velocity component in   z-direction 

w,  x,  y,   z = dummy    variables as required 

A = particle radius of bed material 
P 

A ,   B = constants n'      n 
C = concentration 

C,   D = constants 

D = Domain 

Dx,   Dy = dispersion coefficients 

E,   F = variable functions 

H = height of fluid at   r - » 

I  ,   K = Bessel functions of 1st and 2nd kinds,   respectively 

K = permeability 

Q = discharge rate 

R = cavity,   crater or well radius 

S, = free surface 

T = hydraulic transmissivity 

U = velocity 

OL,  ß - variables 

y = specific weight of fluid 

7 = datum 

€ = specific yield = effective porosity 

IX 



 __^-^_ -Li,; 

PART   I 

WAVES GENERATED BY A TRAVELING DISTURBANCE 



\ 

• 
.. 

■ 



1.     ESTABLISHMENT OF THE BASIC EQUATIONS 

Consider a two-dimensional pressure disturbance arriving at the free 

surface of a body of water, as illustrated in Fig.   1.    The response of 

the water to such a disturbance will be analyzed by means of the long 

wave equations valid for shallow water: 

Continuity: 

7)t + [u (h + r/)j     =0 (1) 
x 

Momentum: 

l r    " rK 
u   + uu     =   -gr?    --P   -—4 ^-r (2) 

t x ^ 'x     p    x    pWTrj) K ' 

where 

x = distance from shore 

t = time after arrival of pressure at shore 

h = h(x) = still water depth 

7/ = surface elevation around still water level 

u     =     horizontal component of water particle velocity,   assumed 
constant over a vertical 

g     =     acceleration due to gravity 

p    =     water density 

P    =     pressure acting on the surface 

T    =     shearing stress at the surface s " 
T,    =     shearing stress at the bottom 

and subscripts are used to denote partial differentiation with respect to 

themselves. 

Of couse,  it is possible to treat these equations successfully by numerical 

techniques (finite differences,  the method of characteristics).    However, 

through suitable approximation,  it is possible to derive analytic solutions, 

in certain instances, which are sufficient. 
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The shearing stresses,    f     and   T. ,    may be written 
s b 

Tb   =   pf2u
2 

where   p.    is the air density and   Uj^ is the wind velocity near the surface. 

Although   U» may be large,    o.    and   f.    are small so that   T      may be 

neglected.    Similarly,  although   p   is large,    {?   and   u   are small so that 

T,    may be neglected.    Hence,  the shearing stress term will be neglected; 

a good approximation except near the shore where   h + TJ   =   0, 

The equations may be linearized by assuming the convective inertia term, 

uu ,    to be small and that   r,   may be neglected in comparison with   h   (a 

crude approximation near the shore).    Then the equations become: 

Continuity: 

"t 
+ (uh)x 

Momentum; 

Ut =   " gT 

(3) 

RV    - - P (4) fi 'x     p    x v   ' 

Differentiating Eq.   3 by   b/'dt   and Eq.  4 by   ^/Sx   gives 

and 

^tt + Uthx + Uxt h   =   0 W 

Uxt    ~    "  8^xx ' p     XX '°' 
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Eliminating   u    and   u      from Eq.  5 by means of Eq,  4 and Eq.  6 results 

in an equation for   f/: 

TU - h   M   + ■!: p ) - h (gTJ     + T p    )   =   0 'tt        x   B 'x     p    x 6 'xx     p    XX (7) 

For a uniformly sloping beach,    h = ooc,  one has 

x T7       + TJ    - —   TJ.. 'xx      'x     Ug     'tt ~   UP      + P  ) pg XX X (8) 

By defining time and length scales 

T   H   U/ag 

L  =   v'/ag 

(9) 

(10) 

where    U   is some (constant) typical velocity,   one may introduce the 

dimensionless variables 

C    =   TJ/L 

X    =   x/L 

T    =   t/T 
(ii) 

which,   when substituted in Eq.   8,   gives 

X f       + C    - C (\ y     + y ) x   XX       X 
(12) 

Assuming no initial disturbance,   the initial conditions are 

C(x.o)  -  CT(x.o)  =  o (13) 



The boundary condition is imposed that 

C-o as y  -•  ao (14) 

The general solution of this initial boundary value problem can be found 

by first applying the Laplace transform to   T»    making the change of 

variable 

? = Vx" 

and then applying the Hankel transform of zeroth order to 

The Laplace transform of Eq.   12 with respect to     T   is 

X f" + f - s   f   =   - (\ ff" + F') (15) 

where 

f(\.s) C(x.r)e"STdT (16) 

fff*. s)   -    \     y(x,T) e"STdr 
J0 

(17) 

and primes denote differentiation with respect to   \. 

Introducing the change of variable 

v^ (18) 

Eq.   15 becomes 

if 
d? 

d f ,  1 df 
~2 +~d? 

d^ff , j_ dP 
,.2       ? d ? 

d- 
(19) 



Letting 

F(k)   =   [   f(?) ?   J (k?) d? (20) 
«JQ 0 

00 

Q(k)   =   V     PC) 'J  (kf) d? (21) 
Jn 0 ;0 

and using the property 

y0  Vd 

the Hankel transform of Eq.   19 gives 

06 2 

C    (±4 + 4^4) - J  (k?)dJ   =   - k2 F (22) 
Jn ^»2     ; d ^       0 

F = -^TTT- (23) 
k    + 4s 

Then the solution obtained by inversion transforms is found to be 

pC+i» „« A  
2 o 

C(X.T)    =    -r(X.T)+~r\ dseST\    dkkJjk?)      ?S    U- ,(24a) 
^1   -c-i- '0 0 (k^ + 4s^) 

The firat part of this expression clearly represents the hydrostatic 

response,  whereas the integral term represents the dynamic response 

which will be denoted by    ^ ,.    That is, 

C(X,T)   =    -  y(\.T) + Cd (24b) 

Before presenting detailed analyses of this solution in specific cases,   it 

is of interest to present a simplified calculation of the small time response. 

Neglecting the gravity terms in Eq.   7 results in 

rrT^>\x + yx (25) 



A pressure wave possessing a sharp front moving at speed   U   in the 

positive   \   direction can be represented as: 

y(\,T) = y(T - \) =  H(T - \) P* (r - \) (26) 

where   H   is the Heaviside step function and   P:;:   is continuous.    Because 

of the form of   P:':,    one may replace    äy/^x   by   - (^y/br)   in Eq.  25: 

C      »; v y     - v 

Making use of Eq.   13 and the identity 

T T~ V 
H(T - \) P:;: (T - \) dr   =   H(T - \) \ P:::(T) d: 

0 

one obtains 

'0 

C «=   H(r - x) \\ P::: (T - \) - \        P:;:(?) d' T «  1 

(27) 

(28) 

(29) 

This may be generalized for an arbitrary bottom   y = -h(\)   and any 

pressure distribution traveling unchanged at constant speed,    y = V(T - \): 

C   «s   h(\) y(T - \) - h  (\)  \     ■) (T - \) dr      T « 1 (30) 

If   v   has a sharp front ahead of which the pressure is zero 

,T-\ 

'0 
r * H(r - \) \h(\) P-HT - \) - h (x) \      P-H') d9]    T « 1 (31) 

These expressions arc a first approximation only but are useful since   P'1' 

and   h   may be quite arbitrary.    Improvements of a higher order can be 

obtained by investigating the full boundary value problem. 
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2.     STEP-FUNCTION PRESSURE OVER A UNIFORMLY SLOPING BEACH 

The simplest model of the pressure assumes a sharp front moving at 

unit velocity,  the pressure being zero ahead and unity behind.   In other 

words 

yi\, T)   =   H(T - x) H{T ') (32) 

where   H   is the Heaviside step function.    The sharp front of this model 

is a realistic representation of the traveling shock,   although the pressure 

behind the shock will actually decay.    Such a decaying pressure will be 

treated in Section 3. 

The composite Laplace-Mankel transform of   y   is 

1 /     k2N Q(k,s)   = exp^-^y 
2s 

Inserting this expression into Eq.   24 it is found that 

r= 2 \   kj(k?)^\        —^—-lüdsdk 
0 Jc-i*        k    + 4s 

(33) 

(34) 

We may evaluate the Laplace inversion integral first and then deal with 

the Hankel integral.    Although the behavior of the Laplace integral for 

large   T   can be found by the method of steepest descent,   as will be dis- 

cussed in Section 5,   the results are not too significant,   physically.    Here 

we shall be concerned with the small time response only. 

The response at small   T   is represented by the transform at large   s. 

Therefore,   we expand the integrand for large   s: 

»± r" z 2ffi 
(-k2) 

n-1 

,    / .   2.n c-ioo     n^l    (4s   ) 
exP iST " 4i7 ds (35) 



Each integral in the expansion may be evaluated: 

I  % 

so that: 

iE n   I    rn-i/2 

n« i 
(36) 

■£ (-l)"-1^-172 
rjo(k')J2n.l(kV^dk (3?) 

The integral factor here may be evaluated in terms of Gauss' hyper- 

geometric function: 

I    Jo(k§) J2n-1 ^V"^ dk   =    T'1/2 F(n.-n+l, 1,^) x<T 

=    0 X > T 

which,   in turn,   may be expressed in terms of Legendre polynomials: 

Inserting this result into Eq.   37 gives 

Cd-     4J-T)nPn(1-27) \ <T 

X >r 

(39) 

Combining this with the static component   -y = - H (T - V)    gives 

C*   {   I!   <-^np
n('-2|)}H(T-X) 

n^l 
T «  1 (40) 

10 



This series may be summed explicitly, giving: 

C   *   (1 + 2T + T2 -  4v)"1/2 -  1 X< T 

0 \ > T 
(41) 

Since   T   and   \   are very small compared to unity,  this expression may be 

approximated as 

2\ - T 

0 

\ < T 

\  > T 
(42) 

which is seen to be the first term of the series in Eq.   40,   the succeeding 

terms being small.    As illustrated in Fip.   2,   the free surface is deformed 

only beneath the pressure,   having a sharp front at the pressure front. 

The mathematical profile   OA'CD satisfies conservation of mass.    Due to 

the presence of the bottom,   however,   the physical system cannot; perhaps 

the new shoreline at   A    should be interpreted as a sink-like singular 

point.    Singular behavior at a shoreline has been investigated by Ho and 

Meyer (1962). 

Reverting to physical variables,  it is found that the peak elevation,    f/p,, 

and the peak depression,     r)-.,    are 
~\ 

P   a t o 

"D   -   " 

pU 

P ( 
pU{2 + o) 

P n1 t o 

(43) 

where   P     is the magnitude of the pressure step. 

This case may be extended to consider a step of finite duration.    The 

pressure may be thought of as a superposition of two step functions: 

y (X,T)   =   H(T - \) - H(T - TO - \) (44) 

11 



Figure 2 

Step-pressure response 
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Analysis similar to the foregoing yields the result illustrated in Fig.   3; 

the length   AE   depends on   T   and   T     and is an almost uniform depression. 

Again,  the maximum water elevation is   Cr   =    T- 

13 



Figure 3 

Finite duration step-pressure response 
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3.     DECAYING PRESSURE OVER A UNIFORMLY SLOPING BEACH 

In this second laodel,  we assume a pressure distribution that decays 

behind a sharp front,   as: 

y(X.T)   =   H (T - V) e ■ßiT-\] (45) 

Then we have 

Q (k,s) 
exp I - -r— ' r \    4s/ 
2s (s + ß) 

exPl-47 

2s2 
1 - ± 

s + /3 
(46) 

The first part of this expression is the same as that of Eq, 33 and so 

represents the dynamic response of that model, which we may denote 

by   CJ   »    enabling us to write 

c. C^-^C^r^e-^-^dr* •d        sd 

by the convolution theorem 

(47) 

Again concentrating on behavior at initial moments (T « 1) we may use 

the small-time approximation of Cd , i.e., Eq. 39 to evaluate the con- 

volution integral: 

J0 

-.T 
ßH (T -  \) \     (1 + 2T- + T*Z -  4X)-l/2 e-MT-T*) dT,: 

15 



Expanding the radical and neglecting terms above first order (since 

T « 1)   gives 

+ 2x -  T - y e'ß(T'x) + 0(T2)} (48) 

Introducing   CJ      
an(i   "  7   then yields 

C   =   H(r-x){-^[l-e-WT-XIJ + Xe-^-^ + 0(T
2)} (49) 

This response is illustrated in Fiq.  4 and may be somewhat more 

realistic than the previous models.    Again,   the peak height is   C = r. 

Reverting to physical variables where    P     is the peak pressure and   ß 

is written as    T/T  ,    where    T     is the time scale of the pressure decay, o O r 7 > 

gives 

P at 
T o 
T,E   ^     pU 

P oT 
00 

(50) 

'D pU 
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Figure 4 

Decaying pressure response 
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4.      THE CASE OF A CONSTANT-DEPTH CHANNEL 

The governing equation for the disturbance in a constant-depth channel 

with a wall at the leading end follows immediately from Eq.   7 

1 
h TJ V.. 

'xx      g     tt 
-iLp 

Og     xx (51) 

The boundary conditions may be written as 

77     =    0 
x 

r    -  0 

at 

as 

x = 0 (. .  u = ^r- ^x =    0) 

x - » for      t < T
0 

(52) 

while the initial conditions are 

77     =    0   =   77 at      t   =    0 (53) 

For small time,  an approximate result is a^ain found by ne^lectinji 

gravity forces so that Eq.   5 1 becomes 

'tt        p     > (54) 

Writing the pressure as 

P(t.g) 

gives 

'     = -L P 
xx -.2      tt 

Letting    P   be a step function 

P   =   PoH (t - £) (55) 

19 



where    P     is the magnitude of the pressure step,  we have 

P       s     °  6' (t-i) xx ,,2 U 

where   Ö   is the delta function.    Then it follows that 

(56) 

P h 

^tt  = -^ ^ (t " TJ* (57) 

Integrating with  respect to   t   from 0 to t   and utilizing the initial conditions 

gives 

P h 

pU 

\1 (58) 

On the other hand,   if we take   P   to be a smooth function,   we have 

7tt =  pu2  Ptt 
(59) 

so that 

V{K. t)   =   -^ {P (x, t) -   P (x, 0) -  t Pt (x, 0)} 
OU 

For example,   letting    P   be given by 

(60) 

P   =   P   erfc ia I4T - t ^x       M w - v; (61) 

where   erfc    denotes the complementary error function,   yields 

^x       .V ,    f    x\ T?(x, t)    - 
P   h o 

pU' 
{erfc [a (^. tjj -   erfc (a ^ 

2a -    exp|_a    [jjj   jj 

Figure 5 illustrates such a response. 

(62) 

20 
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5.      RESPONSE AT LARGE TIME 

It is evident that the present model can only poorly describe the large 

time response since at large time the pressure front will be acting in 

water which is no longer shallow.    Furthermore,  as the blast wave 

progresses,  its strength and velocity eventually decrease to those of 

an acoustic wave,   so that our assumptions are invalid.    But,  still,  it 

is of interest to see what the results are. 

Denoting the Laplace inversion integral of Eq.   34 by I and making the 

change of variable 

A  =  se      6  = V^" <63) 

we have 

TMDS 
c+i «     e(A -k2/4A) 

e 
—2 T~l  

c-i»      A    +k^e/4 
dA (64) 

This is of the form 

[     edi^C(A,6)   dA Jr 

for which the method of steepest descent is suitable.    When   0 » 1 

(r »   1)   one may evaluate the integral approximately by deforming the 

contour in the   A   plane to pass the saddle-points located at 

A ik ik A   =  -r.    -   .j. 

The steepest path should be directed at angles   3 IT/4   and   ff/4   with the 

positive real axis in the complex   A   plane.    Since   G = (A   + k  6 /4) 

23 



has two simple poles at   A = -fc ikQ/Z   it is evident that the residues 

must be accounted for in changing the contour from   F to   F ' (Fig. 6). 

Following standard formulas,  we have: 

I   =   -n r   \      =   -«—r  \ +   Residues 

saddle points    '     poles 

w 
1    /?   k-3/2 

IVff T^r (cos ke - sin ke) 

i T + i 
+ ^   sinj^-^  k)    T»l (65) 

Equation 65 may be substituted in Eq.   34 to yield 

1/4        ,       p» 
C ,   ^ I r   -7^=  \    (cos ke - sin kö) J    {kD-^L d    ^ - 1 vT  o o      ynr 

CO 

+  \      sin (k 1^-1]   J0 (k ? ) dk 
0 

Both integrals in this expression may be explicitly evaluated: 

(66) 

(Cd)      == e Sin(ki4-i) jo(k?)dk 
poles J   > 0 

/2 
T +  1 

(67) 

24 



3. 2      Sample Analysis 

The value of a sample is only as good as the water in it can be meas- 

ured.    This measurement is a function of how the water is removed 

from the sample chamber walls,  the instrument used for analysis,   and 

how accurately the instrument is calibrated.    Although present pro- 

cedures may be adequate and possibly even optimum,   detailed quan- 

titative investigations of many aspects of the procedures would provide 

a sounder basis for analysis results and may well show how improvements 

can be made. 

3. 2. 1     Water Removal 

Experiments on the sampler  so tar have shown that water "sticks" to 

the sample- chamber walls and thai heating drives the water off.     The 

more water that sticks to the walls,   the more margin for error exists 

in the analysis results since even small  percentage differences in the 

amount that sticks in the preflight evacuation and the amount that sticks 

in the postflight analysis might mean large    amounts of water.    A pro- 

gram to quantitatively determine the effects of the following variables 

on water retention is proposed. 

a) Materials.     Present materials plus any others that a litera- 

ture survey indicates might be good. 

b) Chamber Temperature 

c) Chamber Pressure 

d) Water Concentration 

Suitable chambers of candidate materials would be tested on the pres- 

ently used mass spectrometer (unless a better instrument is found,  as 

discussed in the following section).    Chamber surface area and volume 

would be comparable to that of an actual  sample chamber.    Tests would 

be run at at least three values of each of the other three variables so that 

^ 



and 

,1/4 
(Cd) =  H(x - r)    ffifj . n a saddle points yn KT       ' 

r(l/4) II     1     1    T\ 

VTr (3/4)|r//2 F(3     3    3   T\\ (hR. JLYn1—lx)    FU'7'2'xi> (68) 

The complete expression for   ^   then is 

C =  -y + (Cd) +(Cd) (69) 
saddle points poles 

Because of the discontinuities, it is convenient to indicate the effective 

region of each component of this solution in a X - T diagram, shown in 

Fig.  7. 

It is seen from Fig.  7 that two fronts exist,  one moving with the pressure 

front as represented by the ray   X = Ti    and the other moving with ever 

increasing speed ahead of the pressure front.    The variable speed of 

the outer front is given by 

^   =   L^    =    V7 (70a, 

or in physical variables 

^t   =    V^g7 (70b) 
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Figure 7 

Regions of solution components 
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which is precisely the local wave speed "y/ gh   since the depth,    h  is 

ax.    The wave height is infinite there (although integrably singular) and 

the surface in the neighborhood is essentially given by Eq.  67.   Physically, 

the present model would predict a splash-like wave-front driven forward 

by the pressure front and traveling at the local wave speed. 

The decreasing surface height as   x "' ^   is entirely due to the contribu- 

tion of the saddle points,   Eq.   68.    By using the convergent expansion 

F (a, b,  c,   z)   =   1 +   2_] 
<a)n <b)n     z" 

1 (C)n        ^ nS:   1 

(71) 

Eq,   68 becomes 

a saddle points      VX1 '      L      A^^' »X'J 

where 

r(i/4) 
A  '     ^r(3/4) <73' 

and   T/X   is small.    Near the pressure front,    T/X^  1,   the following 

expansion may be used: 

T (a + b)      y    <a)n<b)n 

.   (1  - z)n{log(l  - z) - 20(n + 1) 

+ 0 (a + n) + 0 (b + n) ] (74) 
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Then,  recalling that   0(1 - m) = 0(m) + ffcot nm,    it is found that at 

the front,    r/ X  =    1. 

saddle points 
(75) 

Combining these results,  one arrives at the sketch shown in Fig.   8. 
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6.     DISCUSSION 

In this analysis of a blast wave passing a shore two peculiarities arise: 

1)   the solution is not valid near the shoreline; 2) the free surface rises 

under a positive pressure.    These are related and may be discussed in 

terms of a constant-depth channel which was treated in Section 4. 

First,  it is clear that the disturbance must occur wholly beneath the 

pressure distribution as long as the channel depth is small enough that 

the wave velocity is less than the pressure velocity.    Lamb (1932) found 

that in the case of an infinitely long channel of depth   h,   a distributed 

pressure traveling at speed   U   will result in a surface change in phase 

with the pressure if   U < *^/ gh   and oppositive in phase if   U >'ygh. 

This may be seen as follows.    Choosing a coordinate system moving with 

the pressure,   one obtains a steady state.    From the Bernoulli equation 

P(x) Q 
T. +   h(x)   =   const 

2 gli (x) 

it is found by differentiation that 

/ 
I   dP 
o    dx 

dh 

.-^1^=0 

=  u 
u 

gh 

1   dP 
p   gx       Q^ 

i^" -  1 

Hence,    dh/dx   and   dP/dx   are of |    same    1 sign if   U > Vßh.    It is Lopposite J    6 <;    v e  • 
samt 

opposi 
then easy to see that a positive pressure gives rise to an elevation or a 

depression according to whether the flow is supercritical or subcritical. 

Since the flow velocity is just the velocity of the pressure in a stationary 

coordinate system, we have Lamb's result. 
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In the present case of a semi-infinite channel,   part of the surface is 

elevated because    U >   y gh.    However,   due to conservation of mass, 

this fluid mus1; be supplied from behind the pressure front.    This is 

in accordance  .vith the results presented earlier.    The same con- 

siderations apply to the case of a sloping beach.    The immediate 

neighborhood of the shore deserves further study. 
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PART II 

GROUND WATER  TABLE MOTION 



1.     INTRODUCTION 

In the event of a nuclear explosion near the ground surface,  a cavity 

would be produced.    If the ground water level at the location of the nuclear 

explosion is relatively high,   this would influence the flow of ground water. 

In particular,   radioactive contamination of the ground water basin is 

possible.     Previous investigation into deep-underground explosions 

indicates that water contamination is of little importance.    The same, 

however,   may not be true for a near-surface explosion. 

Several problems are postulated within this report.     These problems 

are either completely solved or solved to the point that numerical eval- 

uation becomes straightforward.      These problems are: 

a) The filling of a cylindrical crater in an unconfined aquifer. 

b) The filling of a cylindrical crater in an unconfined aquifer 

near a river. 

c) The discharge of a stream into a large well in a confined 

aquifer. 

d) A quiescent well in a uniform flow.    The advection and 

diffusion of contaminants initially present in the well are 

also investigated. 

e) Flow into a water surrounded crater. 

PRECEDING 
PAGE BLANK 
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2.      THE FILLING OF A CYLINDRICAL CRATER IN AN 

UNCONFINED AQUIFER 

The problem under consideration is the flow of ground water into an 

empty cylindrical reservoir.    The physical occurrence of this problem 

may be the filling of a cylindrical void excavated by a nuclear explosion. 

This situation is shown in Fig,  9. 

GROUND ü JÜL 
WATER  TABLE 

POROUS  MEDIUM 

///////////////// //////// 
BEDROCK^ 

BEFORE   EXPLOSION 

JLL 
WATER  TABLE 

^ 

H 

BEDROCK 
JUST AFTER EXPLOSION 

Figure 9 

The material within a radius    R   of the explosion is assumed completely 

removed.     The water in the ground starts to flow out of the wetted face 

of the walls of the crater and begins to fill the crater.    As time approaches 

infinity,   the crater would be filled with water to the level   H.    From the 

mathematical point of view,  this problem is one of unsteady,   unconfined 

flow radially towards a large "well" which is initially empty. 
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The problem is first formulated by writing down the differential equation 

and the boundary and initial conditions. 

Z 

rry-.'/ / / l ////v//y///////// / / //v / 
R 

» r 

Figure 1 0 

The differential equation is jjivcn by combining the equation of continuity 

^ u      u      - w 
- r      r      " z 
-Ü + - t -^1   .    0 

with Darcy's law 

u   =    ^o, O   =    -  k  [(p/y) + z] 

where axial symmetry   (-/"O = 0)    has Keen assumed and 

r    =    radial coordinate 

z    =    vertical coordinate 

u    =    velocity component in the    r   direction 
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w = velocity component in the   z    direction 

u = velocity vector 

(0 = velocity potential 

p = pressure 

V = specific weight 

This gives 

n   rj 12_ f  ^ + 
r ^r   \    brJ 

_0 
2 

oz 

This equation applies within the flow field which is bounded by the bottom 

bedrock, the lop free surface, the left seepage face, and the height H at 

r = infinity as shown in Fig.   10, 

The initial condition is the quiescent state with the free surface given by 

z = H - constant   fnr   R •   r ^ T-. 

The boundary com'ition at the right side    (r -* f)   is the velocity   w -♦ 0. 

The boundary condition at the bottom is    w = 0 (z = 0).     The boundary 

condition at the seepage face r = R (0   ' z •' h   )    is    p = 0   which implies 

(P =  - kz. 

The boundary condition at the free surface   z = h(r, t)    is 

a) 

b) 

kinematic 

öh   ,   ^o   ^h      ^o 
n t      or   ^r      ^z 

dynamics 

=    0 

«p   =    - kz 

where   m   is the porosity. 
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Wi« now nondimensionalize the variables by the following formulas.    The 

nondimensionalized variables are shown in Fig, 11. 

h:::   =   h/H,    z*   =    z/H,     r-   =   r/R, 

(p-   =   (p/kH, t* HtriTk 

on   zr': = h:;! 

d<fl!> = 0 

,   .2      VKV     ri;'   ar;: V      Tr*/ at r* - 
dz- 

= 0 

////?*/////////// 

Figure 1 1 

The two boundary conditions on the free surface may be combined. 

Ignoring the stars,   we have 

O   ^    - h   ; o(r, /.-Mr, t), t)    -    - h(r, t) 

Differentiating 

2h. ■   2£ t 212. nil  => ^12 £il Z' i  H i!f2 
^ t 'J t ^Z     n t ^ t      ~      "    - t   \ dz 
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ör 3r      oz är ör 
öh 
är ('+i?: 

These may be used to eliminate one of the variables from the S, (free 

surface) conditions. 

2, 1   Method I:    Expansion-in-time Series 

One of the standard ways of attacking this type of problem (initial boundary 

problem) is the expansion in powers of   t.     Thus,   we let 

(0 (r, z, t)    =   o0 (r, z) + t(flJ  (r, z) + t  o^ + . • 

h (r, t)    -    h0(r) I thjd-)  t  ... 

Substituting into the differential equation 

Joi     ,   _2 1   a     ^    ^N 

oz 
P    --T-   i r -y-i)    -    0 i    -    0. 1,2, ^    r or   \     dr/ 

p   =    H/R    =    constant 

The boundary conditions are 

do. 

dz 
r - x i   =    0, 1,  2, 

d"\. 

oz z = 0 i   =    0,1,2, 

<ß0   '-    -z (ft   =   0 i = 1, 2, . . .     on   r = 1,  0 < z < 1 

(PQ   =    -  1,        on    z = 1 1 < r <. oo 
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For   <p.   1=1,2,...    on   S(,    the condition will have to be derived by 

substituting the series into the boundary condition.     The boundary con- 

dition Is 

^0 d(/5 
ät 2 öO       Tr vo 

i +^" ' p dr 77^" öz 

or 

=    0 

Substituting the series into the boundary condition, 

> .2 
01   +2^+    ...    1    P      LO0        •    t^,        :     ...    j       i    ;0()       +tOl       <    ..^ 

r r "'      A 7. 

+     O -tu ... =0 
~        V. 7. 

Separating the various order of   t 

^i = -ip (—; + \—J '[—) i on z^[ 

i /n2/?^o "p, ) 
oc,i    , ^o wn 

etc. 

The advantage of this method is,   as is the case with most approximate 

theories,   that the nonlinear system is reduced to a succession of linear 

problems.    The solutions should be valid for a relatively small   t. 

Remembering that it is the dimensionless time which must be small,   it 

is instructive to observe that 
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Hm/k 

Typicai values of   H,   m,  and k   indicate that,  for   t:;: = 0. 1,    t   is of the 

order of a day or so.    Thus,   the small time   t:;:   solution is not entirely 

useless.    Indeed,   the solution   (p« + t(p.    should be good for a period of 

a week or so after initial blasting. 

The problem for   (Pn(r, z)   is,   therefore,   as follows   (Fig.   12): 

Z 

4> =-i 

^-z 0,rt2 1   cW    3o0 = o 
b(Do 

o.   «J0 
s -1 

//////// / 

Figure   12 

//////////////////// 

'0 = 0 

Before attempting a solution,   let   <p 

O0   is    (Fig.    13) 
0 1  + On   so that the problem in 

Z 

I 
*l = o 

^=i-z 
a (0„ 

^0 + „2 1   Ö A_ ^o^ 

*z' 

2 1    Ö   /    ^0> *:-o 

/////*////////////////m r 

Figure 13 
^.0 -^F- 0 
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'«« 

To obtain   p-    we separate variables, 

tp'    =    Z(z) R(r)   to obtain 

Z' 2    1      d   /    dR\ , ; 
T "   "p   TR  dFlrd7/   =   constant  =  -k 

-, rsin kz 
Z     (   k'-'Z    =    0       .'.     Z    =    j 

cos  kz 

—-   =    0   at   z = 0   :  Z   =    A.   cos kz 
Bz k 

O0   =    0   at    z = I    -   k = (n f -) TT,     n - 0,1.1, 

The equation in    R   is 

I    d     f r 
dR   1       ^   R   ,   0 

r   Hr    L     dr J      T2 

dfR    + 1 ^ü   .  (k/p)^ R   .   o 
.2 r   dr dr 
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which gives 

R   =   C I    (^ r) + D K    (£ r) 
op op 

where    I    and K     are the modified Bessel functions of the 1      and 2 
o o 

kinds,   respectively. 

The boundary condition for    r -• ^   (<pn -* 0)   then requires    C = 0   since 

I   (x)   ~      e 
o YIT^ 

and 

Ko(x) ^ 
77 -x 
21     C 

Thus,   solution may be expressed 

- 1 + Z   An Ko (-1^- r) cos (n 4 f) ffz 
2' 

n=0 

It remains to evaluate   A      which may be obtained by the use of the re- 
n 7 ' 

maining boundary condition,   i.e.. 

at r =  1 o0--z 

1 

n=0 

1  -  z 

Let 

r(n + j)n . 
B      =   A    K        £_ 

n n     o L     p        J 
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Then,  by Fourier series methods,   Bn  is easily found to be 

8 

772(2n+ I)2 

Hence, 

<p     =   -   1 + 
K   (2n t 1 Us 

o \      Z       p . 
L

nir2Uni I)2   K~T n=0 o \ 

,    ,     ,„\      COS   (2n  +    I)  IT  rr 2n +  1   77 ^ 2 
2       p 

Thus,  we now know   oAv, z) 

Let 

f(r) = . ^ p)2, fy* t ri} 
z=l 

The problem for   O.    is then   (Fig,  14) 

Z 
<k =f(r) 

</>. =0 
äS       n2 1    W     5(31 
oz 

^. = 0 

I V_ ^i_ 0 

Figure   14 

which may be  solved by Hankel   transform techniques.    These will not be 

performed here. 

46 



2. 2   Method II:   Quasi-Steady Solution 

The method presented before would yield the exact solution if the series 

were convergent and if the entire series were found.    Practically,   this 

should be convergent for a small enough   t   and,   for such a small   t, 

perhaps one or two terms in the series would be sufficient. 

Even the  first two terms,   however,   are  not  easily evaluated 

numerically, although it can certainly be done.     This numerical difficulty 

would be more severe in the case of  o.    than   (p„.    In other words,   even 

though the method of expansion in powers of   t   yields analytical solution 

in the form of (3Q(r, z),   (ß Ar, z), etc., to obtain numerical results, it is still 

necessary to do a substantial amount of computational labor.    Therefore, 

it would be desirable to have a simpler solution which would give numerical 

results without too much work.     This would,   of course,   have to be a 

more approximate theory.    Such a theory is presented.    This theory is 

based on the assumption of quasi-steady motion and the Dupuit-Forscheimer 

approximation. 

Z ^ 

R r 

Figure 1 5 

Let Q(t)   =   the discharge through the sides 

h(t)    =   the height of water in the crater 

H        =   the height of water in the porous medium for   r -• a0 
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At a given instant of time,  it can be assumed that the motion is given by 

the Duprit-Forscheimer solution.    With this assumption, 

H2 - h2   =   ^   log r/R (1) 

where    K   is the permeability, and    r   is the radial distance  representing 

the intersection of the Dupuit free  surface with    z = II. 

There are now three unknowns   h(t),   Q(t)  and  r(t).    Therefore,   two more 

equations are needed.    One of them is obviously 

!     Q(T) dT    -    ffR2h 

or 

Q  -   »^^ (.0 

The second one is not so easily found.    One way is that the volume of 

water in the reservoir should come out of the voids of the dewatered 

region.     That is 

TTR   h   ^   € inp sip) dp (3) 
' R 

where    s    is the drawndown as illustrated in Fig.   8 and is given by the 

Dupuit formula 

sip) ^ ii- Vir-^io^ 

and    (    is the porosity. 
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Figure  16 

Before attempting a solution,   nondimensionalize by the following variables 

r* = r/R,      h- = h/H.      Q    = Q/nK\\Z,      t- = —j^  
R   /HK 

Then 

1   - Iv 

h ::: 

Q- log  r" 

dhf 
dt- 

,r:;: 

I 2e   !      p (l - -WT^T^ log pTdp 
l 

fr-"      1 ' 2f ^"T- ' ij * 'ie J PV 1 ■Q!:! lo8 0 dP 

f (r-     -  I) - 2€ j  p -yj I  - Q-:- log p 'dp 

Dropping stars, 
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■ ,...    ■ 

1      K2   -   dh . 
" 3T 0ß r 

f (r    -  1) 2c J^py^W^p dP 

This is a system of nonlinear integro-differential equations, 
examine the integral 

First 

1 

! 
■ 

Let 

1   =   Jp"\/ 1 - Q loj- p dp 

P = ey    dp = t.y cly 

then 

Now let 

Let 

1    =    j  e^' V i   ~   cly 

7-   =    '  "  QV-     V    -   (1   - Z)/Q,      dy    =    -  dZ/Q 

exp1Ä(l-.|]Vr^=    -^    /exp(.|^d2 LO 

w =   ~z ,       dz   .  2 cIvv,    w   =   x' 

' = -^2/Q(r2j.. w 
•v/w   dw 
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r -x   2 The integral   Je        x dx   may be integrated by parts to give 

f -x     2. r /   /-»x    "x   o    J          x    -x      1   C -x    . e        x dx =       (x/2) e        2x dx   =   y e       " T Je        °x 

The original integral   I is evaluated between the limits   r   and   1.    The 

relationship between   x and   p   (after tracing through all the changes of 

variables) is 

x = ^pr = ^TTTyr = Y77^ V1 ■ Qy  = V^^V1 ■ Q 1O« P 

Hence 

I   = J     p -yi - Q lojj p   dp 

^yi - Q log r 

x    -x 
2e 

i  r fzTÖ'yi - Q log r 2 

^""V1 - Q loR 1 

x    . e        dx 

= ^p|^I  exp [- 2"-g'°«->] 1 -2/Q e 
V2Q 

i {( V2/Q  V1 - Q log r) F - ( Vz/Q) F} 

r34   .»2 

where F(x)   =    ;    e   '    d* 

To recapitulate,  one has 

1 - h*   =   Q log r 

Q = dh/dt 
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2M'r h   »   C {r    •   1) - c 
2-2Qlofir   c]cp r    (2 - 2Q log r) 1 

■ 

V175" -2/Q y 2-2gl08r|F 

2/Qy F 

. 

to be solved. 

Now consider the function in the brackets for the expression in h. 

■ ■ ^ 
2 - 2Q lou r 
 Q     ' exp i-z- - ^Q lou r \ ; - Y^TQ" e 2/Q 

/    /2 - 2Q lou ^ 
F ^   (•x/27Q)F 

V2 - 2Q IOK r 

Q 
VT/Q -yi  - Q loj-  r 

so that the expression   E   may be rewritten 

Y2/Q VI - Q log r    exp^- ^ (1  - Q log r)] -  yiÄQ. •2/Q 

'XY27Q"V
1
 - Qloß r JF 4   {•\f27Q) F 

-2/Q {  V1  - Q loft r     e2 loe r -  l} 

■yßlQ^/T- Q Ion r) F + (YITO) F 

^2 



=   YZTQ   e"2/Q   {Vl - Q log r   r2 -  l} 

-     {^fzTQyi - Qlog r)F+  (T/27Q)F 

The system of nonlinear integro-differential equations can be solved, 

and the three functions   Q(t),    h(t)   and   r(t)   may be obtained.    This 

involves some numerical computation; however,  the amount oj com- 

putation should be much less than the computation for   <0n   and   o,,  etc. 

of the first method. 

Another method will be presented which is not based on Eq.   3 but is 

based on the formula 

r   =   R  +   1.5 -yfin (3a) 

or 

r* = i + hl^-\J~*?^f7 = i + I.SVVTHKVF 

where   V = Kb/c.    b   is a weighted average of the depth of the How 

which may, for all practical purposes,  be taken as equal to   H . 

Letting   1.5 "^if/HK   =   ß,    we have (dropping stars), 

r   =    1 + ß^/T (3b) 
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■ I ) •    < 

■ ■   ■ 

§ Equation 3a simply states that the zone of influence of the draining crater 

spreads at a rate proportional to -v/T (which is normal for diffusion-type 
V 

phenomena) with a proportionality constant equal to 1. 5^/|7!    This latter 

constant is based on observations of discharging wells,  Hantush (1965). 
■ 

The other two equations,  of course,   remain unchanged and are 

1 - h     -   Q log r 
; fl ■      ■ ■ 

Q   .   dh/dt 

repeating Eq. 3b, 

r   =   1 + ß^T 

These combine easily to uive 

? 
1   - li      =   dh/dl    lou  (1   f ß-Jl) w 

. 

which may be written 

clh dt 

1  - hi loj. (1  i  ß^T) 
%■' 

The LHS is 

which integrates to 

1 /2 
ilogll - h)  f jlo« (1  + h)   =   log (i-t-i?) 

54 



The RHS is,  letting   t = w  ,   w' = /Sw,  z a 1 + w'   successively 

2w dw 2 w   dw 2     (z -  1) dz 
log (1 + /aw) '   p"   log (I + w)   = "tl      log z 

2    rVz dz\ 
^1 L Mop. t) 

dz  1 
log z^      log Z J 

_2_ r   d (zf)        dz  1 
fl2 L log z2  ' lo« z ' 

Now 

dx 
J  log X logliog x| + log x f l^i + ^rr- + 

Hence,    h(t)   is given implicitly by the relation 

,1/2 
logi"rTT}     = 1O

«I
1O

M ^ + ^VT,2'-l0«'10«(1 + ^V7)' 

+ log (1   t ß -yjt)1 - log (1 + /?yD 

1       U 
2   ! 2 {(log (i + iS YD2}  - Tiogd + ä yt)] } 

or 

1/2 
(r4-h)""   =   exp (f{x2) - f(x)) f(x) 

where   x = 1 + ß-^TT. 

Let 

rx  d* 
J]    log ? 

fi^- =   exp (2 [f(x2) - f(x)])=   F(x) 

55 



one ha a 

F - 1 m 

:^4;J'^V   ' 

The function   F(x)   and,  hence,    h(x)   may be evaluated simply by means 

of the digital computer.   It should look like the curve shown in Fig. 9. 

A:iM-: 
hin) 

Figure 17 

The function   h(x)   is 

h(x) 
e^» -   1 
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wher« 

2 
X        d 

Jx      log ? 

This is the same as 

«log x       y, 
,(x) = r       ^L* Ei no, x 

log x 
£-*-  =   Ei (log x") - Ei (log x) 

=   Ei (2 log x) - Ei (log x) 

=   Ei(2^) - Ei (I) 

where   I = log x 

Thus, 

h(logx) =   HK)   =   c^]l - 1 TTTTY   =   tanhri(Ei(2^-Ei(.))] 

^   =   log (1  + ß-\ft) 

h(l)   is evaluated in the range   0 £ I < 2   and this is shown graphically in 

Fig.   10,   It can be seen that this last method cives a fillinc time which 

depends only on the quantity   R  /u.    The accuracy of the result depends 
on the formula   r = R + 1. 5 "yJvt. 
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3.      THE FILLING OF A CRATER NEAR A RIVER IN AN UNCONFINED 

AQUIFER 

The problem of the flow of ground water into an empty cylindrical crater 

in a medium with infinite extent has been considered in Section 2 and is 

relatively simple, due to circular symmetry.    In the case of a crater 

located near a river or a lake,   such as Detroit,  the problem becomes 

rather complicated due to its nonsymmetry.    An exact solution involves 

a considerable amount of computer calculation which is beyond the time 

limit.    In order to obtain the numerical results,  approximate solutions 

are given.    These approximate solutions are based on some assumptions, 

in particular the Dupuit-Forscheimer assumption,  as has been discussed 

in the previous sections. 

Figure 19 indicates the general configuration of the problem.    The 

elevation of the water along the river is assumed to be constant.    That 

is to say the fluctuations of water level of the river are neglected.    The 

mathematical formulation of the problem is similar to the problem 

indicated in Section 2 except along the river where   <p = k(p/r +• z)   is 

constant.    The differential equation and boundary conditions can be 

written as follows: 

The differential equation 

V (P   =   0 

The boundary conditions at the free surface are the same as in the case 

of an infinite aquifer, that is 

a) Kinematic 

9h   .   öü) dh      ä(fl        - 
dt       dr  or      oz 
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b) Dynamic 

<p   =   - kz 

The boundary condition along the river is   <p   =   - kH. 

The notations are as defined in the previous sections except   X   which 

is the distance between the crater and the river. 

One of the methods of solution to this problem is to use the method of 

images.    On the opposite side of the river,   as shown in Fig. 201   one 

introduces a recharge crater,  with the recharge strength equal to the 

flow strength of the crater.    One obtains the solution for each individual 

crater by use of power scries as has been done   n the previous section. 

Since the equation of the velocity potential for different order is linear, 

we may superpose the solution of two individual craters and obtain the 

resultant solution which satisfies the boundary condition along the river; 

As has been demonstrated in the previous sections,  the calculation of 

the numerical solution of one crater by use of power series expansion 

is quite laborious.    Therefore,   in the following section,   an approximate 

solution is given from which numerical results may be calculated without 

too much work. 

It is clear that the solution of this problem can be divided into two stages. 

Stage 1, when the radius of influence zone,    r,    is less than the distance 

between crater and river,    X.    In this stage,  the problem can be consid- 

ered as if the river were not present.    The solution has been obtained in 

the previous section.    Stage 2,  when the radius of influence zone,    r, 

is greater than X.    In this stage,  the river begins to effect the motion of 

the ground water.    However,  in this stage the gradient of the velocity 

potential   <p  becomes smaller (the gradient of velocity potential is max- 

imum at initial instants and near the crater).    The assumption of small 

drawdown may be used. 
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As the drawdown becomes smaller the discharge in a column of unit 

width,    q,    may be approximated as 

kHvh 

where   H   is average depth of the aquifer.    Substituting this equation into 

the unsteady continuity equation 

V-   q    =    €   ^ 

where   c   is the norosity gives 

v2h  = JL 4* 

This is the usual heat equation.    Since the equation is linear,   one could 

also use the superposition method to satisfy the boundary condition along 

the river. 

Writing the Laplace equation in cylindrical coordinates one has 

VHi + 1    5h c     ^h 
,2     r   ^r   =   KH  ät or 

The solution to this equation with the boundary and initial conditions 

prescribed in Section 2 is 

00 "11 

h   =   H 5—     f    2       — du 
0     4ffKH     J^-i-       u 

4ffHt 

H    - -2_   [- E.(.x)l 
O       A-irU    L        1 J 477KH 
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where 

X    = 

4KHt 

The drawdown is 

■ 

• 

H    - h 
o 

- [- E. (-x)l 
rTj   LI J 4irKH 

Superposing two craters in space as indicated in Fig.   2] one has 

H    - h   = 
o 47rKII 

111 
4KHt 

I   E. Ill 
4KTTt 

• 
where   r.    and   r.   are distances from crater and image crater,   respectively. 

They are equal to 

(x -  X)    t v 

(x + X)2 t y* 

in a rectangular system. 

The equation governing the filling of the crater is 

a t 

Substituting into the previous equation we have 

dh 
dt 

4 HK (Ho-h) 

R' 
rl € 

1      '   + E. 
4KTTt ' ' 

111 
[   4KHt/J 
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After integrating, we obtain 

log(Ho-h)   = 4 HK t 
T + c 

V 
4KHt1 

+   E, 
r2^ 

4KHtI 

Using the initial condition  t = 0,   h = 0,   we have   c = log Hc 

therefore 

H Tj-   =   1 - exp 
4HKt 

E.   i--^-|  + E. 
4KTIt, 

AL 
4KHt 

-0 

IMAGE CnATER 

PA-J-9»7S 

Figure  21 
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4.      DISCHARGE OF STREAM INTO A LARGE WELL IN A 

CONFINED AQUIFER 

In the case where the explosion has created a cavity near a stream and 

the aquifer under consideiation is confined, the solution of the problem 

of filling the cavity may be rather simply found with the notation shown 

in Fig, 22. 

•: y 

Figure  22 

where b   = the thickness of the aquifer 

Xj = distance from origin to center of point well 

ho = water level in well 

h   = water level in stream s 

d   = distance from center of real well to stream 

R = radius of well 

x   = coordinate 

y   = coordinate 
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. 

The solution may be written as 

Q        (* - Xj)   + y 
hs "h = WT ln-—:—12 .   1 

where 

(x  +  x^     +  y 

Q   =   discharge 

T    =   hydraulic transmissivity   =   Kb 

K   =   permeability 

This is the solution for a point well at   x =  x.,    y   =   0   with a stre 

of head   h     along 

as yet unspecified. 

am 

of head   h     along   x  =   0.    The distance   d   and the well radius   R are s 
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For a finite diameter veil, any equipotential may be taken as a well 

cross section.    Thus 

along the well edges 

cross section.    Thus,   if   h      is the level of water in the well,   then w 

Q (x-x^+y2 

h
8" hw = 4?rln 7~r~J~i 

(x + Xj)    + y 

and 

(x - x, )    + y r4ffT   , '' 
"i    - h   ) , 

s        v/ j 
— j—z   *   exp   -Q-   (ho - h.J ,   =   a 
(x + Xj)    + y 

This is the equation of a circle (the well edj;e), 

(x - Xj)     + y      =   Of (x + x.)    + Ofy 

or 

2      l+O ,        ^2^2 x    -  |  _ a 2x1x + Xj 4 y      -    0 

o ^      l+o^,       /     l + o\        2    (     l + av      2 

or 

I        2 

Xl 
( 1 1 a\    ,2 2 /l + aV 

Thus, the center is at x = x. , and the radius is x.~\/ f ^ —j     -   1   =  R. 

This solution may be easily adapted to a finite circular well at a distance 

d   from the stream.     The center is at 

1 + a 1 + a 
xl 1 - cy  ^   " xl o^l 

since   a > 1,    always, for a flow into well. 
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-  X 
1 + a 

or a - 1 

and 

• 
R 

y- 

Recall that 

* 

o 

where 

ß 

Thus, 

- '.^4? - ■ = ^^ 1   d 

-  U s        w 'J tß 

Zltl, 
U       s        w 

Am    ~   "T? "   ~? TTi   -    tanh P 
e       +1 e     f t- 

and 

Hence, 

thus. 

0 + 1 ,    - 
cm = cu^ ß 

.cTn;   = coth  ß 

vö^iy ■1 = coth ß -1 cosech     ^ 

- Xj   =   d tanh Z5 
d   = Xj coth /9 
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R   =   (tanh .«) (cosech ß) d   = gfcj ^ 

d sech /?  =   R 

The procedure for obtaining the solution is (Fig.   23): 

Cos y 

ß ß 

Figure   23 

Given   R,  d,   h   ,   h   ,    and   K,   b,   etc. s       o 

1) Obtain   ß   from   d   =   (cosh ß) R 

d > R •=   =   cosh ß 

2) Obtain   x.    from    |x. [  = d tanh ß 

3) Q   =   2m/ß   (h    - h   ) 
S iV 

Solution: 

4irT (h 
-Q-  (hs 

h)   =   In   (x - d tanh ß)2 + y2 

(x + d tanh ßr + yd 

which gives equipotential lines and,  by implication, flow lines. 

71 



To get filling times,  etc. ,  h     = h   (t) B s >     w vvw 

7ifT 27rT hc       r -i 

Q'" • -—rr <h. - hw(t>i = —TTd-   ' ■«"'] cosh      ■= cosh      — 
K R. 

h   (t) 

s 

One either has 

jrR2h   (t)   =    '    Q(T) dT 
w J0 

which gives 

2 il 

irR^h   C(t)   =    I   Q(T) CIT s .0 

or 

3T =   R2    "-Id r'-^   =   Cd-O 
R    cosh      -g 

K 

C   =    constant   = 
D2        , -1 ci R     cosh      ■= 

d ^ r   i,  ^- -    C clt 
1 

Integrating 

- log (1  -  C)    -    C t + constant 

The condition   t = 0,   C = 0   implies that the constant = 0 

2T t 
C   =   exp ^• 

R     cosh      -g 
R 
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or 

h   (t) •       , 
w      _   . / 2T t       \ 

R- cosh   '5' 

and finally, 

"»'"^.['■«-(-^^TT)] R   cosh     •-■ 
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5.      A QUIESCENT WELL IN A UNIFORM FLOW 

If,  after the crater is filled,   one can assume there is a uniform flow over 

the well as illustrated in Fig. 24.   some fluid will pass through the well, 

and some fluid will bypass it.    If the fluid in the well were radioactive, 

and if it were assumed that the radioactivity is simply advected,  it would 

be of interest to know the width of the zone of contamination downstream. 

Figure 24 

It will be shown in this section that   d = 4 R. 

With the x, y coordinate    system shown in Fig. 24 ,   the mathematical 

problem is 

2 n      2~ 
7h    = Ofor    r    =  "WX    +y      >R 

- k -5— =   U   for    r -• ^ 
ox 

h   =    constant   on    r = R 
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Without loss of penerality,   this constant can be taken to be zero.     The 

solution to this problem can be found easily,   and it is 

h  =  .Ucose(r.R_) 

r   ^ + y 

9    =   tan      y/x 

This is the real part of 

,2 U   i R 
k" ; z " — , z        \ < iy 

The imaginary part is 

ü   =   -  k ^- '    2       Z/ 
X      t   y 

The value of   o   at   y = R,   x   - 0    is 

K 

Thus,   the critical streamline (Fig.  25) is represi'iitecl by the equation 

u  ?D LI R^y     i _2R    .    _     y  : ___i_ 
x     f y 

as    x - =s     this implies   y  -  2R   - cl/2.      Thus, the thickness of tlie zone of 

contamination    d    is 4R. 
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Figure  25 

The foregoinii analysis is based on nondispersivc flow.    Actually,   the 

radioactivity would,   ol course,   disperse transversely from the zone of 

contamination with the result of a larger zone than    4R. 

To investigate dispersion in a porous medium,  the situation could be 

idealized and the case of a simple mixing zone (Fig.  26) is investigated. 

C=0 

C = l 

u 

u 

Figure 26 

The only variable is the concentration   C,    and the governing equation 

is the dispersion equation 
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öC 3C 
<3x    '       dy        3x x   \    x Sx /       Tv   \    y Öy / 

which,  in the present case,   since  v  =   0 and  U =  u, becomes 

U dx    " 7x L   xTx J     "^y L   y "3y~J 

Here  D     and  D    are the dispersion coefficients in the loncitudinal and x y ^ b 

transverse directions. 

Neglecting the   D    term compared with the  D    term on the ground of a x y 
boundary layer (BL) assumption,   we have 

OX oy   \        y / 

where C   =   D  /U.    Since   U  is cüiistant,   D     would be expected to 

be constant also.    Hence,    e   is constant.    Absorb   C  in   y   to obtain 

^C 0 C 
■'x dy' 

BC y    -   *.      C   ^   0 
x   >    0 

y   -   -»,   C  =   1 

y   -    S -    -C/-y   -   0 

For a similarity solution,  let 

r} ■- (y/V^) 

and  c   -   f( TJ); then 

:-C 
ox 

1        V 

^S ^ f i 
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Thus,    DE   becomes 

jVC +f"   =   o 

and   BC   becomes 

£(»)   =0     f(-«)   =   1 

The solution is C   =    -  ilZ^JW 

f(T,)   =    + —!—    i        e dr 

yF  vr\ll 

This is the standard diffusion type solution and may be found in textbooks. 

The value of   D     needs to be estimated.    In Ref.   Z a oraph shows    D   /D 
y y 

as a function of   A   V/D  where 
P 

A      =    particle radius of the bed material 
P 

V      =    velocity (U in this case) 

D      =    diffusion coefficient (molecular) 

For larce velocities    V,     (or for A   V/D~ 10) D   /D   is about 5 to 10. 
p y 

Hence,   D    can be taken to be about   D to 10D   for practical purposes. 

The similarity variable is 

1 V .,11 
rJZ       2 

-yJT^fDTü'       2VD
y
x/U 
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Let yQ0   be the   y   where   C = 1/10 

This means 

1/10    > 90 

2  V(Dy/U) x 

Thus 

90 i^/D-TTT^r 

1.64 

The mixing zone,   therefore,   grows   like "^/""x" with a proportionality constant 

*■■   3 VlOD  /U 
y 

Applied to the present problem,   the flow situation would appear as shown 

in Fig.  27. 

Figure  27 

... ■ v.\- >■.■ ■■■■••■ ■•■■,•.<: v.-- ^.,.,'-'As.»-.Vw.< \\- 

•■- .^ -   .■   •'-'■'       '• ;   V-.-ilVt- •,^>:'N'H<-V - 
.'.■    .'.■.■..•.. \\   :  ;•<■•■..-N.A*-.<'.X^.UVV-." 

■ .  .  , - .V.': '-AVVv 

1. 
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Since the substance undergoing dispersion is radioactive in nature,   there 

is a natural rate of decay.    Thus,   the equation for dispersion should be 

modified by a decay term.    For those isotopes that decay very slowly in 

comparison with the motion in the porous medium,  the above nondecay 

analysis should apply.    For those isotopes which decay reasonably rapidlyr, 

the analysis of the problem should be as shown in Fig.  28. 

Still considering the simple case of a mixing zone, 

Figure 28 

the governing equation is 

■T oC U —    f  kC   -   D   ^-f 
ox v      2 

whore it is assumed that the radioactive decay rate is proportional to 

the concentration with   k   as the proportionality constant.    Dividing by   U, 

oC       k   „ ^C 
—   ' ü c   -   C "I 

cy 

The special case    C - 0   gives the solution 

C   =    Co exp (- -j-, x) 

where   C     is the concentration at   x = 0.     This may be applied to the 
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core of the zone of contamination in the previous problem.    This may now 

be taken as the boundary condition at   y - -». 

Nondimensionalizing the variables by 

O-   =    C/C   ,      x*   = (k/U) x, y* -   -yfik/D   )   y 

the following equation is obtained 

^C* , r...   _    o2C- 

ox-- dy-'- 

with the boundary conditions 

C*   -•  0   as    y*   -   »,    for   x* >   0 

C   :   - V    ' US       y:::   -  -       . X;;:     •   0 

Lei 

C::: - Ü     i as    x 

e-^^ f 

—-   -    -e f  t  i" 
JX- 

j   C -x- e  j e f   ... .2 y-y- 
dy- 

the equation becomes 

M f+f    .     d2f 
JX- ,2 

oy- 

8Z 



or 

of   _   a f 
öy ..2 

The boundary conditions become 

f -• 0   as   y* -* 

f -• I    as   y:': -• 

x > 0 

Now note that this is the same problem as the case of nondecay disper 

sion.    Hence,   the solution is 

f   =   -i-  I        o' ■      cl: 

Hence, 

C    =   Co   exP(-^x) 
V^" ^5/2 

,2 
cl' 
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6.  FLOW INTO A WATER SURROUNDED CRATER 

In the case of the New Orleans burst, flooding could extend to areas of 

considerable size,   and the water will certainly surround the crater lip. 

Therefore,   the time of filling of the crater would be different from the 

case of infinite media. 

If the Dupuit-Forchheirner assumption is used and initial transient 

phenomena are neglected,  we immediately have the equation for ground- 

water motion 

u2      uz Q     , ro H    " h      =   ?K    ^   IT 

The notations are indicated in Fig.   21',   except    Q   and    K   which are 

defined in the previous .sections to be discharge and permeability. 

Another equation which governs the filling of the crater is 

I   Q(r) dr  =   7TR"h 

or 

d t 

Combining the equation with the equation of motion,   we have 

dt r 
log   ^ 

?"::■■- i ■• ■ : 

f) .:"■•:."    ; ^:i]{ 
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or 

dh       =        K dt 

H2 - h2       ,,2 .      ro 
R    log -g- 

After integrating,  we obtain 

1,     , -1 h Kt     , 
H tanh      H   =   ^ T   + C 

R2log^ 

The initial conditon,    h = 0   when     t = 0,    implies   c = 0. 

Therefore,   one has 

u *    .          H Kt 
h   =   H tanh     

R   1OMX 

,-• ■    .-•■■ ;■   ■   ■;>•,■% 
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